
Testing First-Order Logic Axioms in
Program Verification

Ki Yung Ahn12 and Ewen Denney3

1 Portland State University, Portland, OR 97207-0751, USA
2 ? Mission Critical Technologies, Inc. / NASA Ames Research Center,

Moffett Field, CA 94035, USA
3 Stinger Ghaffarian Technologies, Inc. / NASA Ames Research Center,

Moffett Field, CA 94035, USA
kya@cs.pdx.edu, Ewen.W.Denney@nasa.gov

Abstract. Program verification systems based on automated theorem
provers rely on user-provided axioms in order to verify domain-specific
properties of code. However, formulating axioms correctly (that is, for-
malizing properties of an intended mathematical interpretation) is non-
trivial in practice, and avoiding or even detecting unsoundness can some-
times be difficult to achieve. Moreover, speculating soundness of axioms
based on the output of the provers themselves is not easy since they do
not typically give counterexamples. We adopt the idea of model-based
testing to aid axiom authors in discovering errors in axiomatizations.
To test the validity of axioms, users define a computational model of
the axiomatized logic by giving interpretations to the function symbols
and constants in a simple declarative programming language. We have
developed an axiom testing framework that helps automate model defini-
tion and test generation using off-the-shelf tools for meta-programming,
property-based random testing, and constraint solving. We have experi-
mented with our tool to test the axioms used in AutoCert, a program
verification system that has been applied to verify aerospace flight code
using a first-order axiomatization of navigational concepts, and were able
to find counterexamples for a number of axioms.

Key words: model-based testing, program verification, automated the-
orem proving, property-based testing, constraint solving

1 Introduction

1.1 Background

Program verification systems based on automated theorem provers rely on user-
provided axioms in order to verify domain-specific properties of code. AutoCert
[1] is a source code verification tool for autogenerated code in safety critical do-
mains, such as flight code generated from Simulink models in the guidance, nav-
igation, and control (GN&C) domain using MathWorks’ Real-Time Workshop
? MCT/NASA Ames internship program

code generator. AutoCert supports certification by formally verifying that the
generated code complies with a range of mathematically specified requirements
and is free of certain safety violations. AutoCert uses Automated Theorem
Provers (ATPs) [2] based on First-Order Logic (FOL) to formally verify safety
and functional correctness properties of autogenerated code, as illustrated in
Figure 1.

AutoCert works by inferring logical annotations on the source code, and
then using a verification condition generator (VCG) to check these annotations.
This results in a set of first-order verification conditions (VCs) that are then sent
to a suite of ATPs. These ATPs try to build proofs based on the user-provided
axioms, which can themselves be arbitrary First-Order Formulas (FOFs).

If all the VCs are successfully proven, then it is guaranteed that the code
complies with the properties4 – with one important proviso: we need to trust
the verification system, itself. The trusted base is the collection of components
which must be correct for us to conclude that the code itself really is correct.
Indeed, one of the main motivations for applying a verification tool like Auto-
Cert to autocode is to remove the code generator—a large, complex, black
box—from the trusted base.

The annotation inference system is not part of the trusted base, since anno-
tations merely serve as hints (albeit necessary ones) in the verification process—
they are ultimately checked via their translation into VCs by the VCG. The
logic that is encoded in the VCG does need to be trusted but this is a relatively
small and stable part of the system. The ATPs do not need to be trusted since
the proofs they generate can (at least, in principle) be sent to a proof checker
[3]. In fact, it is the domain theory, defined as a set of logical axioms, that is
the most crucial part of the trusted base. Moreover, in our experience, it is the
most common source of bugs.

Fig. 1: AutoCert narrows down the trusted base by verifying the generated code

4 The converse is not always true, however: provers can time out or the domain theory
might be incomplete.

However, formulating axioms correctly (i.e., precisely as the domain expert
really intends) is non-trivial in practice. By correct we mean that the axioms
formulate properties of an intended mathematical interpretation. The challenges
of axiomatization arise from several dimensions. First, the domain knowledge
has its own complexity. AutoCert has been used to verify mathematical re-
quirements on navigation software that carries out various geometric coordinate
transformations involving matrices and quaternions. Axiomatic theories for such
constructs are complex enough that mistakes are not uncommon. Second, the
axioms frequently need to be modified in order to formulate them in a form
suitable for use with ATPs. Such modifications tend to obscure the axioms fur-
ther. Third, it is easy to accidentally introduce unsound axioms due to implicit,
but often incompatible interpretations of the axioms. Fourth, speculating on the
validity of axioms from the output of existing ATPs is difficult since theorem
provers typically do not give any examples or counterexamples (and some, for
that matter, do not even give proofs).

1.2 Overview

We adopt the idea of model-based testing to aid axiom authors and domain ex-
perts in discovering errors in axiomatization. To test the validity of axioms, users
define a computational model of the axiomatized logic by giving interpretations
to each of the function symbols and constants as computable functions and data
constants in a simple declarative programming language. Then, users can test
axioms against the computational model with widely used software testing tools.
The advantage of this approach is that the users have a concrete intuitive model
with which to test validity of the axioms, and can observe counterexamples when
the model does not satisfy the axioms.

In §2 we develop a sequence of simple axioms for rotation matrices, and
use these to motivate this work by showing some of the pitfalls in developing
axioms. Then §3 shows some examples of axioms used by AutoCert and the
issues that arise in testing them. §4 describes the implementation and evaluation
of our testing framework. We conclude with a discussion of related work (§5) and
thoughts for future work (§6).

2 Axioms for Program Verification

In vehicle navigation software, frames of reference are used to represent different
coordinate systems within which the position and orientation of objects are mea-
sured. Navigation software frequently needs to translate between different frames
of reference, such as between vehicle-based and earth-based frames when com-
municating between mission control and a spacecraft. A transformation between
two different frames can be represented by a so-called direction cosine matrix
(DCM) [4, 5]. Verifying navigation software therefore requires us to check that
the code is correctly carrying out these transformations, that is, correctly repre-
sents these matrices, quaternions, and the associated transformations. As we will
show, however, axiomatizing these definitions and their properties is error-prone.

In the following subsections we will use a simplified running example of a
two-dimensional rotation matrix (rather than a 3D transformation matrix).

2.1 Axiomatizing a two-dimensional rotation matrix

The two dimensional rotation matrix for an angle T is given by
(

cos(T) sin(T)
− sin(T) cos(T)

)
.

Matrices in control code are usually implemented using arrays, and the most
obvious way to axiomatize these arrays in FOL is extensionally, i.e.,

select(A, 0) = cos(T) ∧ select(A, 1) = sin(T) ∧ · · ·

but this is unlikely to prove useful in practice. Consider the C implementa-
tion init in Table 1, which is intended to initialize a two dimensional rotation
matrix. A VCG will apply the usual array update rules to derive that the out-
put X should be replaced by update(update(update(update(a, 0, cos(t)),
1, sin(t)) , 2, uminus(sin(t))), 3, cos(t)). Unfortunately, provers are
generally unable to relate this update term to the extensional definition so, in-
stead, we use the following axiom, written in TPTP first-order formula (FOF)
syntax, which defines an array representation of the two-dimensional rotation
matrix as a binary relation rot2D between an array A and angle T.

fof(rotation2D_def, axiom, ![A,T]:((lo(A)=0 & hi(A)=3)

=> rot2D(update(update(update(update(A

, 0, cos(T)), 1,sin(T))

, 2,uminus(sin(T))), 3,cos(T)), T))).

The function init can be specified with precondition (lo(a)=0&hi(a)=3)
and postcondition rot2D(X,t), where X is the function output. In practice, we
also have conditions on the physical types of variables (e.g., that T is an angle),
but omit this here. Using this specification for init gives the verification con-
dition vc in Table 1. We can prove vc from the axiom rotation2D_def alone
using two provers from SystemOnTPTP [2], as shown in the first row of Table
2. We chose EP 1.1 and Equinox 4.1 here because these two provers use different
strategies. In general, it is necessary to use a combination of provers in order to
prove all the VCs arising in practice.

2.2 Adding more axioms

Initialization routines often perform additional operations that do not affect the
initialization task. For example, init1 and init2 in Table 1 assign some other
values to the array elements before initializing them to the values of the rotation
matrix elements. Although there are some extra operations, both init1 and
init2 are, in fact, valid definitions of rotation matrices since they both finally
overwrite the array elements to the same values as in init. However, we cannot
prove the verification conditions generated from these functions from the axiom
rotation2D_def alone (Table 2), because the theorem provers do not know that
two consecutive updates on the same index are the same as one latter update.

We can formalize this as the following axiom:

C code Verification Condition

void init(float a[], float t)

{

a[0]= cos(t); a[1]= sin(t);

a[2]=-sin(t); a[3]= cos(t);

}

fof(vc, conjecture, ((lo(a)=0 & hi(a)=3)

=> rot2D(update(update(

update(update(a

,0, cos(t)),1,sin(t))

,2,uminus(sin(t))),3,cos(t))

,t))).

void init1(float a[], float t)

{

a[0]= sin(t);

a[0]= cos(t); a[1]= sin(t);

a[2]=-sin(t); a[3]= cos(t);

}

fof(vc1, conjecture, ((lo(a)=0 & hi(a)=3)

=> rot2D(update(

update(update(

update(update(a

,0, sin(t))

,0, cos(t)),1,sin(t))

,2,uminus(sin(t))),3,cos(t))

,t))).

void init2(float a[], float t)

{

a[0]= sin(t); a[1]= sin(t);

a[2]= sin(t); a[3]= sin(t);

a[0]= cos(t); a[1]= sin(t);

a[2]=-sin(t); a[3]= cos(t);

}

fof(vc2, conjecture, ((lo(a)=0 & hi(a)=3)

=> rot2D(update(update(

update(update(

update(update(

update(update(a

,0, sin(t)),1,sin(t))

,2, sin(t)),3,sin(t))

,0, cos(t)),1,sin(t))

,2,uminus(sin(t))),3,cos(t))

,t))).

void initX(float a[], float t)

{

a[0]=-cos(t); a[1]= sin(t);

a[2]=-sin(t); a[3]= cos(t);

}

fof(vcX, conjecture, ((lo(a)=0 & hi(a)=3)

=> rot2D(update(update(

update(update(a

,0,uminus(cos(t))),1,sin(t))

,2,uminus(sin(t))),3,cos(t))

,t))).

Table 1: 2D rotation matrix code and corresponding verification conditions

VC axioms EP (eprover) 1.1 Equinox 4.1

vc rotation2D_def Theorem Theorem

vc1
rotation2D_def CounterSatisfiable Timeout
rotation2D_def, update_last Theorem Theorem

vc2
rotation2D_def, update_last CounterSatisfiable Timeout
rotation2D_def, update_last, update_commute Theorem Timeout

vcX

rotation2D_def CounterSatisfiable Timeout
rotation2D_def, update_last CounterSatisfiable Timeout
rotation2D_def, update_last, update_commute Theorem Theorem

Table 2: Results of running EP and Equinox through the SystemOnTPTP website with
default settings and a timeout of 60 seconds.

fof(update_last, axiom,

![A,I,X,Y] : update(update(A,I,X),I,Y) = update(A,I,Y)).

Then, both EP and Equinox can prove vc1 as a theorem from the two axioms
rotation2D_def and update_last, as shown in Table 2.

The verification condition vc2 generated from init2 is not provable even with
the update_last axiom added. This is because init2 has more auxiliary array
updates before matrix initialization, and update_last axiom is not applicable
since none of the consecutive updates are on the same index. To prove that
init2 is indeed a valid initialization routine we need the property that two
consecutive independent updates can switch their order. The following axiom
tries to formalize this property.

fof(update_commute, axiom,

![A,I,J,X,Y] : update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X)).

With this axiom added, EP can prove vc2 from the three axioms rotation2D_def,
update_last, and update_commute, but strangely, Equinox times out. It is true
that some theorem provers can quickly find proofs while others are lost, depend-
ing on the conjecture. Nevertheless, considering the simplicity of the formulae,
the timeout of Equinox seems quite strange and might indicate a problem.

2.3 Detecting unsoundness and debugging axioms

It is important to bear in mind when adding new axioms that we are always
at risk of introducing unsoundness. One way to detect unsoundness is to try
proving obviously invalid conjectures.5 For example, the verification condition
vcX for the incorrect initialization routine initX is invalid. The function initX
is an incorrect implementation of the rotation matrix (§2.1) because -cos(t) is
assigned to the element at index 0 instead of cos(t), and hence does not satisfy
rot2D. However, both EP and Equinox can prove vcX. The problem is that we
have not thoroughly formalized the property that independent updates commute
in the axiom update_commute (see §3.2).

Note that the theorem provers have not guided us to the suspicious axiom as
the source of unsoundness. We decided to examine the axioms based on our own
experience and insights, not just because Equinox timed out. Theorem provers
may also time out while trying to prove valid conjectures from sound axioms.
We should not expect that the most recently added axiom is always the cause
of unsoundness. Coming up with an invalid conjecture that can be proven, and
thus shows that the axioms are unsound, is usually an iterative process. We used
our own intuition to find the cause of the problem, again with no help from the
provers. Finally, note that the axiom rotation2D_def is already quite different
from the natural definition of the matrix given above.

In this section, we have shown that it can be difficult to debug unsoundness
of the axioms used in program verification systems even for three simple axioms.
5 It is not enough to just try and prove false since different provers exploit inconsistency

in different ways. Moreover, a logic can be consistent yet still be unsound with respect
to a model.

In practice, we need to deal with far larger sets of axioms combining multiple
theories. In the following section, we will show how our method of testing axioms
against a computational model helps us to detect problems in axioms more easily
and systematically.

3 Testing Axioms

When we have a computational model, we can run tests on logical formulae
against that model. Since axioms are nothing more than basic sets of formulae
that ought to be true, we can also test axioms against such a model in principle.
Before going into the examples, let us briefly describe the principles of testing
axioms. More technical details will be given in §4.

Given an interpretation for function symbols and constants (i.e., model) of
the logic, we can evaluate truth values of the formulae without quantifiers. For ex-
ample, plus(zero,zero)=zero is true and plus(one,zero)=zero is false based
on the interpretation of one as integer 1, zero as integer 0, and plus as the
integer addition function.

We can interpret formulae with quantified variables as functions from the
values of the quantified variables to truth values. For example, we can interpret
![X,Y]: plus(X,Y)=plus(Y,X) as a function λ(x, y). x+ y = y +x which takes
two integer pairs as input and tests whether x+y is equal to y+x. This function
will evaluate to true for any given test input (x, y). When there exist test inputs
under which the interpretation evaluates to false, then the original formula is
invalid. For example, ![X,Y]: plus(X,Y)=X is invalid since its interpretation
λ(x, y). x + y = x evaluates to false when applied to the test input (1, 1).

Formulae with implication need additional care when choosing input values
for testing. To avoid vacuous satisfactions of the formula we must chose inputs
that satisfy the premise. In general, finding inputs satisfying the premise of a
given formula requires solving equations, and for this we use a combination of the
SMT solver Yices [6] and custom data generators (so-called “smart generators”).

In the following subsections, we will give a high-level view of how we test the
axioms with the example axioms from §2 and also some from AutoCert.

3.1 Testing axioms for numerical arithmetic

Numeric values are one of the basic types in programming languages like C.
Although the axioms on numerical arithmetic tend to be simple and small com-
pared to other axioms (e.g., axioms on array operations) used in AutoCert, we
were still able to identify some unexpected problems by testing. Those problems
were commonly due to the untyped first-order logic terms being unintentionally
interpreted as overloaded types. Even though the author of the axiom intended
to write an axiom on one specific numeric type, say integers, that axiom could
possibly apply to another numeric type, say reals.

For example, the following axiom formalizes the idea that the index of an
array representing an 3-by-3 matrix uniquely determines the row and the column:

fof(uniq_rep_3by3, axiom,
! [X1, Y1, X2, Y2]: (

(plus(X1,times(3,Y1)) = plus(times(3,Y2),X2)
& leq(0,X1) & leq(X1,2) & leq(0,Y1) & leq(Y1,2)
& leq(0,X2) & leq(X2,2) & leq(0,Y2) & leq(Y2,2))

=> (X1=X2 & Y1=Y2))).

To test the axiom it is first translated into the following function (where we limit
ourselves to primitives in the Haskell prelude library):

λ(x1, y1, x2, y2) . ¬(x1 + 3y1 = 3y2 + x2 ∧ 0 ≤ x1 ≤ 2 ∧ 0 ≤ y1 ≤ 2
∧ 0 ≤ x2 ≤ 2 ∧ 0 ≤ y2 ≤ 2)

∨ (x1 = x2 ∧ y1 = y2)

Assuming that this function is defined over integers (i.e., x1, y1, x2, y2 have
integer type), we can generate test inputs of integer quadruples that satisfy the
constraint of the premise (x1 +3y1 = 3y2 +x2 ∧ 0 ≤ x1 ≤ 2 ∧ 0 ≤ y1 ≤ 2 ∧ 0 ≤
x2 ≤ 2 ∧ 0 ≤ y2 ≤ 2). Since the constraint is linear, Yices can generate such
test inputs automatically, and all tests succeed.

However, nothing in the axiom says that the indices must be interpreted as
integers, and the axiom can just as well be interpreted using floating points, and
with plus and times interpreted as the overloaded operators + and ∗ in C. If we
test with this interpretation we find counterexamples such as (x1, y1, x2, y2) =
(1
2 , 1

2 , 2, 0). The existence of such an unintended interpretation can lead to un-
soundness.

3.2 Testing axioms for arrays

Array bounds errors can cause problems in axioms as well as in programming.
For example, recall the axiom update_last introduced in §2.

fof(update_last, axiom,

![A,I,X,Y] : update(update(A,I,X),I,Y) = update(A,I,Y)).

When we give the natural interpretation to update, the test routine will abort
after a few rounds of test inputs because the index variable I will go out of
range.

Rather than complicate the model by interpreting the result of update to
include a special value for out-of-bounds errors, we modify the axiom to constrain
the range of the array index variable:

fof(update_last_in_range, axiom,

![A,I,X,Y]:((leq(lo(A),I) & leq(I,hi(A)))

=> update(update(A,I,X),I,Y) = update(A,I,Y))).

Now, all tests on update_last_in_range succeed since we only generate test
inputs satisfying the premise (leq(lo(A),I) & leq(I,hi(A))).

Similarly, we can also modify the axiom update_commute as follows.

fof(update_commute_in_range, axiom,

![A,I,J,X,Y]:((leq(lo(A),I) & leq(I,hi(A)) & leq(lo(A),J) & leq(J,hi(A)))

=> update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X))).

Then, we can run the tests on the above axiom without array bounds error,
and in fact discover counterexamples where I and J are the same but X and Y
are different. We can correct this axiom to be valid as follows by adding the
additional constraint that I and J are different (i.e., either I is less than J or
vice versa).

fof(update_commute_in_range_fixed, axiom,

![A,I,J,X,Y]:((leq(lo(A),I) & leq(I,hi(A)) & leq(lo(A),J) & leq(J,hi(A))

& (lt(I,J) | lt(J,I)))

=> update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X))).

The test for this new axiom succeeds for all test inputs.
As for the axiom rotation2D_def, itself, we observed above that it is quite

different from the “natural” definition of the matrix. Thus, we test the axiom
against the interpretation rot2D in Figure 4 with 100 randomly generated arrays
of size 4 and find that it does indeed pass all tests.

Finally, the axiom symm_joseph in Figure 2 is intended to state that
A + B(CDCT + EFET)BT is a symmetric matrix when A and F are N×N sym-
metric matrices and D is an M×M symmetric matrix. This matrix expression,
which is required to be symmetric, arises in the implementation of the Joseph
update in Kalman filters. However, when we test this axiom for N = M = 3 and
assuming B, C, and E are all 3×3 matrices, we get counterexamples such as

(I0, J0, I, J, A, B, C, D, E, F, N, M) =

1, 0, 0, 0,

 9.39 4.0 −3.53
4.0 0.640 −0.988

−2.29 −23.8 −1.467

 , ...

 .

We can immediately see that something is wrong since A is not symmetric.
The problem is that the scope of the quantifiers is incorrect and therefore
does not correctly specify that the matrices are symmetric. This is fixed in
symm_joseph_fix using another level of variable bindings for I and J, and the
test succeeds for all test inputs under the same assumption that N = M = 3
and B, C, and E are all 3×3 matrices. However, symm_joseph_fix still shares
the same index range problem as update_last and update_commute. Moreover,
nothing in the axiom prevents N and M being negative, and the dimensions for
matrices B, C, and E are not explicitly constrained to make the matrix operations
mmul and madd well defined.

4 Implementation

We have implemented a tool using Template Haskell [7], QuickCheck [8],
and Yices [6], as illustrated in Figure 3. An axiom in TPTP syntax is parsed
and automatically translated into a lambda term using Template Haskell. Us-
ing a metaprogramming language like Template Haskell has the advantage that

fof(symm_joseph, axiom,

! [I0, J0, I, J, A, B, C, D, E, F, N, M] : (

(leq(0,I0) & leq(I0,N) & leq(0,J0) & leq(J0,N)

& leq(0, I) & leq(I, M) & leq(0, J) & leq(J, M)

& select2D(D, I, J) = select2D(D, J, I)

& select2D(A,I0,J0) = select2D(A,J0,I0)

& select2D(F,I0,J0) = select2D(F,J0,I0))

=>

select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E)))),

trans(B)))), I0, J0)

= select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E)))),

trans(B)))), J0, I0))).

fof(symm_joseph_fix, axiom,

! [A, B, C, D, E, F, N, M] : (

((! [I, J] : ((leq(0,I) & leq(I,M) & leq(0,J) & leq(J,M))

=> select2D(D,I,J) = select2D(D,J,I)))

& (! [I, J] : ((leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))

=> select2D(A,I,J) = select2D(A,J,I)))

& (! [I, J] : ((leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))

=> select2D(F,I,J) = select2D(F,J,I))))

=>

(! [I, J] : ((leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))

=> select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E)))),

trans(B)))), I, J)

= select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E)))),

trans(B)))), J, I)

)))).

Fig. 2: An erroneous axiom on symmetric matrices and the fixed version

we inherit the underlying type system for the interpreted terms. We generate
a Haskell function rather than implement an evaluator for the logic. During
the translation we transform the logical formula into a “PNF (prenex normal
form) like” form moving universally quantified variables to the top level as much
as possible.6 For example, ![X]:(X=0 => (![Y]:(Y=X => Y=0))) is translated
into the logically equivalent ![X,Y]:(X=0 => (Y=X=>Y=0)). We need to lift all
the variables to the top level universal quantification to interpret the axioms as
executable functions.

6 The difference from PNF is that we avoid introducing existential quantification where
possible.

Fig. 3: Testing Framework

pred2hsInterpTable = [("rot2D",[|rot2D|]), ("lt",[|lt|]), ("leq",[|leq|])]

term2hsInterpTable =

[("lo",[|lo|]), ("hi",[|hi|]), ("update",[|update|])

, ("uminus",[|uminus|]), ("cos",[|cos|]), ("sin",[|sin|])

, ("0",[|0|]), ("1",[|1|]), ("2",[|2|]), ("3",[|3|])]

rot2D :: (Array Integer Double, Double) -> Bool

rot2D(a,t) = (a!0) === cos t && (a!1) === sin t

&& (a!2) === (- sin t) && (a!3) === cos t

lo a = fst(bounds a)

hi a = snd(bounds a)

uminus :: Double -> Double

uminus x = -x

update :: (Array Integer Double, Integer, Double) -> Array Integer Double

update(arr,i,c) = arr // [(i,c)]

leq(x,y) = x <= y

let(x,y) = x < y

Fig. 4: Interpretation for the 2D rotation matrix axiomatization

Given a user-provided interpretation for the constants, the lambda term be-
comes an executable function which can then be used as a property in QuickCheck,
a property-based testing framework for Haskell. The user-provided interpreta-
tion should be concise and easy to inspect so that it can serve as a reference
model, suitable for inspection by domain experts. We believe that a declarative
language like Haskell is suitable because of its conciseness. For example, part of
the interpretation for testing the two-dimensional rotation matrix axioms dis-
cussed in §2 and §3 is shown in Figure 4. The tables pred2hsInterpTable and
term2hsInterpTable interpret each predicate and term symbol as Haskell val-
ues. Here, ("cos",[|cos|]) relates the parsed TPTP symbol "cos" with the
Haskell library function cos wrapped with a Template Haskell bracket. This al-
lows a piece of syntax to be passed around as a meta-programming object and
executed later (i.e., when we invoke QuickCheck) without conflicting with the
Haskell type system.

The next step is to use a combination of QuickCheck library random gener-
ators and Yices to automatically synthesize test generators that generate inputs
satisfying the premises of the axiom formula, thus avoiding vacuous tests. In the
case where Yices cannot solve the constraints, we use our own smart generators
with the help of combinator libraries in QuickCheck.

We sometimes need to patch or fill in unconstrained values that are missing
from the results of Yices. For example, among the four variables in the axiom
update_last_in_range, X and Y are unconstrained since they do not appear
in the premise, so we randomly generate X and Y independently from Yices.
Sometimes, there can be unconstrained variables even if they do appear in the
premise because the constraints on those variables are trivial (e.g., solutions for
x satisfying x + 0 = x).

Then, we can invoke QuickCheck over the property combined with the test
generator. The basic idea is to call quickCheck (forAll generator property),
where generator generates the test data and property is the property to test.
However, we make a few changes to this basic scheme, which we now discuss
while showing how we invoke QuickCheck on some of the axioms in the Haskell
interactive environment.

For the axioms on integers with linear constraints such as uniq_rep_3by3
in §3.1, it is possible to fully automate the test. Recall that we only collect
constraints from the premise (i.e., left-hand side of the implication). For example,
we can run the test on uniq_req_3by3 as follows.

> mQuickCheck($(interpQints uniqr3by3) (genCtrs uniqr3by3))

(0 tests)

non-trivial case

...

(99 tests)

non-trivial case

+++ OK, passed 100 tests.

The first change to the basic scheme is that mQuickCheck has a wrapper over the
library function quickCheck which allows its argument to be of an IO monad

type. This allows test generators to perform the side effect of communicating
with the Yices process in order to solve the constraints. interpQints generates
an interpretation for the axiom from its argument uniqr3by3, and uniqr3by3 is
the syntax tree for the axiom uniq_req_3by3. The genCtrs function generates
constraints from the premises of the axiom.

Second, for the axioms on arrays and on types other than integers, we may
need type annotations and other constraints to narrow the search space. For
example, to test update_commute_in_range we call:

> mQuickCheck(

$(interpQ updatecommr

[| (listArray(0,3)[1.0..]::Array Integer Double,

0::Integer, 0::Integer, 0.0::Double, 0.0::Double) |])

(ASSERT(Y.VarE "_I":>=LitI 0):ASSERT(Y.VarE "_J":<=LitI 3):

ASSERT(Y.VarE "_J":>=LitI 0):ASSERT(Y.VarE "_I":<=LitI 3):

(genCtrs updatecommr))

...

*** Failed! Falsifiable (after 4 tests):

(array (0,3) [...], 0, 0, 2.8288383471313097, 1.9408590255175935)

After a few tests it finds a counterexample such that both the index variables I
and J are 0. The additional annotation is because of the dependencies between
variables. The variables I and J in the axiom update_commute_in_range are
constrained by the index range of A. This means that we can only generate useful
test values of I and J after generating a test value for A. The type information
including the array index range is specified in [|...|] and the ASSERT’s specify
the constraints for the variables I and J. Currently we do not automatically infer
these dependencies, but this could be done.

Lastly, when we test axioms involving floating point numbers, such as symm_joseph,
we need to give some tolerance for errors. Otherwise, tests will fail for most of
the mathematical properties (e.g., associativity of addition) we expect to hold
on real number arithmetic. We define an overloaded comparison operator (===)
in Haskell which compares integers with the usual equality operator (==) but
compares floating point numbers with a predefined error tolerance.

4.1 Evaluation

In addition to testing the axioms from AutoCert’s domain theory, we have
also carried out some simple mutation testing on several of the axioms in order
to simulate the most common errors. For example, we replace logical operators
(e.g., conjunction with disjunction), change the polarity of premises (adding
and removing negation), replace numeric indices (to give off-by-one errors), and
switch variables and function symbols (e.g., I with J, sin with cos).

There are three possibilities: the premises are satisfiable and the mutated
axiom is still valid, the premises become unsatisfiable and the axiom is vacuously
true, or the mutant is invalid. We created a range of mutants for the axioms
considered in this paper and, after filtering out the provable mutants we were,

in each case, able to either derive a counterexample within 10 steps, or conclude
that the mutated premises were vacuously true.

5 Related Work

The idea of evaluating propositions with respect to a computational interpreta-
tion goes back to early work of Green [9] and Weyhrauch [10]. More recently,
there has been some work on the use of testing to validate and debug logical
conjectures. Claessen and Svensson [11] use QuickCheck to test FOL conjectures
arising in inductive proofs of protocol correctness. Propositions are interpreted
as invariants on a particular state transition system. Generating test cases for
invariants amounts to generating paths from a random initial state. To test in-
ductive invariants they “adapt” an arbitrarily chosen (possibly non-reachable)
state to the proposition-under-test, effectively giving a test data generator gen-
erator. Berghofer and Nipkow [12] also use QuickCheck, to test theorems in
Isabelle/HOL, particularly those involving inductive data types and inductive
predicates. They create generators to generate data of arbitrary size for any
inductive data type. In both these cases, the authors’ goals are to test conjec-
tures in a logic, rather than the axioms of the underlying logic itself, given a
computational model.

Carlier and Dubois [13] have similar motivation and approach to ours, but
in the setting of a typed functional language and a higher-order proof assistant.
Since they mostly rely on random testing they generate and discard many test
cases before they collect meaningful test cases. In contrast, we try to generate
tests data efficiently by automatically synthesizing smart generators. Dybjer et
al. [14] explore testing and proving in a dependent type setting, but do not
automate the synthesis of test generators.

Planware [15] is a system for the deductive synthesis of planning and schedul-
ing software. In deductive synthesis, implementations are synthesized from spec-
ifications through a sequence of correctness-preserving refinements. Correctness
of these steps ultimately rests on a logical axiomatization of the domain theory.
In Planware, the axioms are validated [16] via a theory morphism, that is, by
translation into conjectures in another logic, in this case, set theory, where they
are proven as theorems. The target theory thus serves as the intended interpre-
tation.

Theory development in Isabelle [17] also typically proceeds in such a “defini-
tional” style, where more complex properties are built from a small set-theoretic
core. However, we have not adopted this approach since we consider the domain-
specific axioms (in contrast to the underlying laws of arithmetic and relational
algebra) to be our starting point. These definitions and laws, typically com-
ing from mission documents, are thus tantamount to requirements. Moreover, it
would be a lot of work to derive them from first principles, and would provide
little benefit to engineers.

6 Conclusion

We have described our approach to model-based testing of first-order logic ax-
ioms used by the verification tool AutoCert. We believe that our approach can
help to systematically debug axioms, and also help maintain soundness of the
logic while actively developing axioms. We have shown that it is quite feasible to
derive counterexamples, even when the axioms are difficult to inspect. The com-
putational model serves both as an interpretation against which the axioms can
be tested, and as a reference which can be inspected by domain experts, since
they remain significantly clearer than the axiomatization, particularly when we
optimize the axioms to make the theorem provers search for proofs more effi-
ciently. One clear conclusion we draw is the need for a typed logic to reduce
unsoundness. Although types can be encoded in an untyped setting, we plan to
investigate the recently proposed Typed First-Order Form [18].

Previously, we had frequently run into inconsistency, and sometimes this
was not noticed until quite some time after the erroneous axioms had been
added. Using the testing framework we have been able to find counterexamples
for some axioms that had been previously known to be suspicious, as well as
some previously unsuspected axioms. It also helped us avoid unsoundness arising
from implicit but different models of the logic. Testing and proving are therefore
complementary aspects to developing a formal verification.

An important aspect of testing is discovering corner cases of idealized models
(e.g., overflow in fixed point arithmetic and round-off errors in floating point
arithmetic). In our work, we used an arbitrary tolerance for round-off errors,
but a more sophisticated notion, depending on input variables, is appropriate.

In terms of developing an infrastructure for the certification of safety-critical
software, minimizing the trusted base is important. An important part of testing,
and thus qualifying, the axioms will be to develop an appropriate notion of
coverage (as in [13]), to give some measure of confidence that enough testing has
been done. In the case of testing programs, coverage criteria are usually expressed
in terms of branches and decisions taken by the software. For axioms, we also aim
to cover all branches (that is, all independent ways of satisfying the hypotheses)
as well as covering the domain (e.g., by considering all representatives of each
frame of a DCM).

We are currently extending the framework in two directions: testing verifi-
cation conditions, and testing functions. As observed by Claessen and Svensson
[11], we would like to know when a VC really is invalid, and when it is simply
unprovable due to a missing axiom, say. We are extending the framework to be
able to also test VCs, and thus provide insight into when the problem lies in a
missing axiom, rather than an invalid VC. A related goal is to black-box test
library functions which implement the concepts in the axioms, using the same
mathematical specifications.

Lastly, we have also tested a number of axioms that involve physical units
and equations. These axioms need to be modified in order to make them testable,
but we believe that this can be done in a principled and systematic manner.

References

1. Denney, E., Trac, S.: A software safety certification tool for automatically generated
guidance, navigation and control code. In: IEEE Aerospace Conference. (March
2008)

2. Sutcliffe, G.: System description: SystemOn TPTP. In: 17th International Con-
ference on Automated Deduction (CADE 2000). Volume 1831 of Lecture Notes in
Computer Science., Springer (2000) 406–410

3. Sutcliffe, G., Denney, E., Fischer, B.: Practical proof checking for program cer-
tification. In: Proceedings of the CADE-20 Workshop on Empirically Successful
Classical Automated Reasoning (ESCAR ’05). (July 2005)

4. Kuipers, J.B.: Quaternions and Rotation Sequences. Princeton University Press
(1999)

5. Vallado, D.A.: Fundamentals of Astrodynamics and Applications. Second edn.
Space Technology Library. Microcosm Press and Kluwer Academic Publishers
(2001)

6. Dutertre, B., de Moura, L.: The YICES SMT solver. Tool paper at http://yices.
csl.sri.com/tool-paper.pdf (2006)

7. Sheard, T., Peyton Jones, S.: Template metaprogramming for Haskell. In: ACM
SIGPLAN Haskell Workshop 02, ACM Press (October 2002) 1–16

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the ACM SIGPLAN International Conference
on Functional Programming. (September 2000) 268–279

9. Green, C.: The Application of Theorem Proving to Question-Answering Systems.
PhD thesis, Stanford University (1969)

10. Weyhrauch, R.: Prolegomena to a theory of mechanized formal reasoning. Artificial
Intelligence 13(1,2) (1980) 133–170

11. Claessen, K., Svensson, H.: Finding counter examples in induction proofs. In: The
Second International Conference on Tests and Proofs (TAP 2008). (2008) 48–65

12. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: 2nd IEEE Inter-
national Conference on Software Engineering and Formal Methods (SEFM 2004).
(2004) 230–239

13. Carlier, M., Dubois, C.: Functional testing in the Focal environment. In Beckert,
B., Hähnle, R., eds.: The Second International Conference on Tests and Proofs
(TAP 2008). Volume 4966 of Lecture Notes in Computer Science., Springer (9-11
April 2008) 84–98

14. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in depen-
dent type theory. In: 16th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs 2003), Springer (2003) 188–203

15. Blaine, L., Gilham, L., Liu, J., Smith, D., Westfold, S.: Planware: Domain-specific
synthesis of high-performance schedulers. In: The 13th IEEE International Con-
ference on Automated Software Engineering (ASE ’98), Honolulu, Hawaii, USA,
IEEE Computer Society (1998) 270–280

16. Becker, M., Smith, D.R.: Model validation in Planware. In: Verification and Vali-
dation of Model-Based Planning and Scheduling Systems (VVPS 2005), Monterey,
California, USA (6–7 June 2005)

17. Paulson, L., Nipkow, T.: Isabelle: A Generic Theorem Prover. Volume 828 of
Lecture Notes in Computer Science. Springer-Verlag (1994)

18. Claessen, K., Sutcliffe, G.: A simple type system for FOF. http://www.cs.miami.
edu/∼tptp/TPTP/Proposals/TypedFOF.html (2009)

